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THE DYNAMIC STABILITY OF A SIMPLIFIED
FOUR-WHEELED RAILWAY VEHICLE
HAVING PROFILED WHEELS

A. H. WICKENS
British Rail Research Department, Derby

Abstract—The dynamic instability of a four-wheeled railway vehicle, due to the combined action of the creep
forces acting between the wheels and the rails and the conicity of the wheels, is investigated in the case where the
vehicle body is attached to the wheels by means of an elastic suspension. The suspension is assumed to have
negligible stiffness in the longitudinal direction, and the wheel treads are profiled instead of being purely conical.
It is shown that there are two possible types of instability; the wheelset instability which occurs at high speeds
and which involves mainly wheelset motion and' the body instability which occurs at low speeds and involves
large displacements of the body. The effect of the restoring force which arises from the lateral component of
the variation of the normal reaction between wheel and rail with lateral displacement is shown to have an
important effect on stability, and it is indicated how this effect can be exploited in conjunction with suspension
damping in the proper design of a railway vehicle for stable running at high speeds.

NOTATION

a; amplitude of displacement in ith freedom
C moment of inertia in yaw of wheelset
C moment of inertia in yaw of body
LS longitudinal and lateral creep coefficients
g hysteretic loss factor
G = &,8/p'a
hl length defined in Fig. 1
j = C/mP?
ki, ky suspension .elastic stiffness coefficients in longitudinal and lateral directions
K = (2u+2¢j)/pu
1 length defined in Fig. 1+
m mass of wheelset
m mass of body
Di coefficient in characteristic equation
d, generalized co-ordinate
0, generalized force
ro wheel tread circle radius, wheelset in central position
R radius of curvature of wheel tread.
R’ radius of curvature of rail head

1 d
s pp——

Vo dt
t time
v =V/V,
v, non-dimensional critical speed

forward speed of vehicle
Vo reference speed
w axle-load
o = Alfry
o angle between contact plane and horizontal, wheelset in central position
€ rate of change of the angle between contact plane and horizontal with lateral displacement,
divided by !
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84, €2, &3 non-dimensional stiffness coefficients
phase angle
effective conicity
= #;+iv;, root of characteristic equation
= pfv

u non-dimensional creep coefficients
= ol/V,
=m'/m
= C'/mP
non-dimensional generalized co-ordinate
circular frequency

= V\/ (0/2e3)

iR e =1

CESEAD eFE >

INTRODUCTION

THEe dynamic instability of railway vehicles is due to the non-conservative forces acting
between the wheels and the rails, which arise from the phenomenon of creep. In [1] a
linearized stability analysis of a single bogie or wheelset (a wheelset consisting of two
wheels mounted on a rigid common axle) having profiled wheels was considered. It was
assumed there that the vehicle body did not participate in the motion at the critical speed,
and so it is the purpose of the present paper to present an analysis including the motion
of the body. It is found that a complete vehicle may experience two forms of instability,
the wheelset instability which is discussed in [1] and which occurs at high speeds and
the body instability which involves large motions of the vehicle body and which usually
occurs at much lower speeds than the wheelset instability.

@ B S@

FiG. 1. Arrangement of railway vehicle.

Much of the earlier work on the stability of railway vehicles [1] was concerned with
locomotives, and little work has been carried out on vehicles in which the stability is
dominated by the action of the suspension. Matsudeira [2] and Kovalev [3] have con-
sidered the effects of lateral and longitudinal suspension flexibility on the stability of
four-wheeled railway vehicles, but neglected the gravitational stiffness effect. This effect
is the lateral restoring force which arises from the variation of the normal reaction
between wheel and rail with lateral displacement, and while it is negligible in magnitude
for conical wheels, it can be very large for profiled wheels. It is shown below that this
effect is very important, and can be exploited in the design of a railway vehicle for running
at high speeds.

As it is desirable to consider as simple a system as possible, the theory developed here
assumes a vehicle possessing two wheelsets (Fig. 1) which is moving along the track at
constant speed. Each wheelset is connected to the vehicle body, which is assumed to be
rigid, by means of a suspension which possesses stiffness in the lateral direction only.
The neglect of longitudinal suspension stiffness not only simplifies the stability analysis
considerably, but it can be shown that under certain conditions longitudinal stiffness has
no effect on stability.
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EQUATIONS OF MOTION

Neglecting rolling motions of the vehicle body, the motions which are antisymmetric
with respect to the longitudinal plane of symmetry can be described in terms of six
generalized co-ordinates. The analysis will be facilitated if the following co-ordinates
(Fig. 2) are chosen:

g, equal and opposite lateral displacements of the wheelsets

q, equal and opposite yaw displacements of the wheelsets

q; Yyaw of the body about the body centre of mass

ds equal lateral displacements of the wheelsets

gs equal yaw displacements of the wheelsets

qe lateral displacement of the body.

- x 5
i |

o -
= -}

FIG. 2. Motions associated with generalized co-ordinates g,.

In the absence of suspension damping, the equations of motion of the vehicle are
mg +2ky(q, —hlgs) = Q,, Cq, = Q,,
3C'43+2k;hi(hlgs —q,) = O, mia+2ky(9a—4ge) = Qu 1)
Cis = Qs,  3Mds+2ky(ds—qa) = O,

where m, m’ are the masses of the wheelset and body respectively, C, C’ are the moments
of inertia in yaw of wheelset and body respectively, k, is the lateral suspension stiffness,
2hl is the wheelbase and Q,, Q,, Q4 and Qs represent the forces applied by the rails to
the wheels, expressions for which have been derived in [1], and are

-2f'q, 4 _ —2f12 . 2fAl

v +2ff12—W3“l‘s Q= % qd,— o q;. ¥)]

Q,=

Similar expressions exist for Q, and Q.. In equations (2), V'is vehicle speed, 2! is the dis-
tance between contact points on the wheels, 7, is the radius of the tread circle of the
wheels when in the central position, fand f” are the longitudinal and lateral creep coeffi-
cients, Wis the axle-load and ¢ and A are geometrical parameters. If R is the radius of
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curvature of the wheel tread and R’ is that of the rail head then it is shown in [1] that
e = I/{R—R) (3)
and the effective conicity
A = Réo/(R—-R), 4

J, being the slope of the contact plane when the wheelset is in the central position.
The following non-dimensional parameters, consistent with.those used in [1}, will be
used in the analysis

p=2flmvy, o =2"lYmvy

a = Alfr,, v= ViV, §= —;«0-%,
j= C/mi?, p = mim, o = C'/ml?,
g, = 2k, P/mV3, & = WellmVi, i, =¢,+&,,
¥y = q,/l, Y2 = 42 Y3 =43,
Vs = 4a, Vs = qs/l, Y6 = 4e/l,

where ¥, is a reference velocity. The equations of motion then take the form

<52+%s+§2)g{/1 —~ WY, —heys =0,

pof 4 +(f$2 ’*%S) ¥, =0, (5
—hey +Gos? + e, = 0,

and

oo ,

(52"‘;34'52)‘/’4‘# Ys—eps =0,
I
pap o+ js*+=s s = 0, (6)
— &0, +Gps® + e W6 = 0.

Both sets of equations are of exactly the same form. The equations of motion are un-
symmetric due to the non-conservative nature of the forces due to the combined action

of creep and conicity.
Some typical values (representative of British Rail practice) are

ro = 751, I =251t m = 90 slugs,
C = 360 slugs ft2, W = 93001b, k, = 5000 Ib/ft,
f =4 = 3x10°1bs, R’ = 0-690 ft, R = 0787 ft,

8o =005 hli=>51t, m = 400 slugs, C' = 12x 10? slugs ft?,
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and taking the reference velocity ¥, = 100 ft/sec it follows that

u=y =167, a = 0-571, j = 0640,
&, = 0:0694, &, = 06562, h = 2-00,
g =213, p = 444,

These numerical values will be used to illustrate the theory as it is developed.
On the assumption that the free motions of the system are of the type
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F1G. 3. Behaviour of roots of complete vehicle as speed is varied. (——— root locus for elastically

restrained wheelset.)

the equations of motion represented by equations (5) or (6) define an eigenvalue problem
and typical solutions of this eigenvalue problem at various vehicle speeds are shown in
Fig. 3, for the case where the suspension damping is zero. The figure shows only those
solutions corresponding to oscillatory constituents; for there are two roots which are
real, negative and have large values. These correspond to heavily damped subsidences
involving either lateral translation or yaw of the wheelsets. Similar subsidences occurred
in the case of the elastically restrained wheelset [1], and as this type of motion is heavily
damped at all speeds it need not be considered any further. The remainder of the roots
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correspond to oscillatory motions and are shown in Fig. 3(a). The variation of the fre-
quency of each constituent with speed is shown in Fig. 3(b). At any given speed, there are
two oscillatory constituents, one of which possesses a frequency which is very closely
the same as the kinematic frequency associated with a wheelset, the other possessing a
frequency which is very closely equal to the natural frequency of the vehicle body oscillat-
ing on the suspension with the wheels fixed.

The root locus in Fig. 3(a) indicates that at low speeds the damping in each mode is
positive, for all the real parts of the roots are negative. As the speed is increased, the
damping in each mode eventually becomes negative indicating instability. There is,
therefore, for this particular example, a critical speed for each of the two oscillatory
constituents. Corresponding to the body mode a critical speed occurs which is somewhat
less than the speed at which frequency coincidence between the wheelset kinematic
frequency and the natural frequency of the body mode occurs. The degree of instability,
as measured by the maximum value of the real part of the root, in this case is limited.
This instability will be termed body instability. At higher speeds, a further critical speed
occurs, and comparison with the root locus of the system with body fixed, also shown in
Fig. 3(a) shows that this is associated with the wheelset instability investigated in [1]. The
accuracy with which the approximate root locus of the elasticaily restrained wheelset
agrees with the root locus of the complete vehicle at the higher speeds justifies the approxi-
mation used in [1] of neglecting body motion. Above the critical speed corresponding
to the wheelset instability, the real parts of the roots increase rapidly with increasing
speed.

The numerical values shown in Fig. 3 correspond to the solution of equations (6),
involving lateral translation of the body, for the example vehicle; similar characteristics
would be obtained for equations (5) involving yaw of the body.

APPROXIMATE LOW SPEED ROOT LOCUS

At low speeds, the frequencies of the free motions of the vehicle are sufficiently low to
justify neglecting the mass and moment of inertia in yaw of the wheelset, so that the
equations of motion to be considered become

W .
<—3+52>¢4"# Ys—epe =0,

v
u
#a¢4+;S¢s =0, )
—e¥a+GpsP+e)We =0,

in the absence of suspension damping, the effect of which will be considered later. For a
free motion of the type

q, = K, "
the characteristic equation of the system is

Pt +p3A2+py A+ piA+pe =0, (8)
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where i ,
P4 = p/2¢;, ps = pvé,/2u'e,,
2

22,

py =1+ py = v /1t po = av’.

Typical solutions of this quartic equation shows that it possesses two pairs of conjugate
complex roots; one pair with a large and the other with a small modulus. An approxi-
mation to the roots with large modulus is found by equating to zero the sum of the first
three terms in the characteristic equation. An approximation to the roots with small
modulus is found by ensuring that the product of the approximate quadratic factors yields
the correct values for p, and p,. In addition, since the speed is considered to be low,
av® may be neglected in comparison with 2¢,/p so that the coefficient p, will be approxi-
mately unity. The characteristic equation then factorizes as

(A2 + 20 A+ v (A2 4 2,44 vE) = 0, 9
where
n1 = vE,/2u
v = 2e,/p,
2
v} = av’

The first oscillatory constituent, with roots #, + iv,, has positive damping and the fre-

quency corresponds to lateral oscillations of the body on the suspension. The second

oscillatory constituent, with roots #,+iv,, has the same frequency as the kinematic

oscillation of a single wheelset [1]. The dampmg of this constituent vanishes at a critical
speed v, given by

, 2858,

v = ——/—.

apé,

The critical speed is inversely proportional to the square root of the conicity and to the
square root of the body mass. The frequency v, at which instability occurs, is given by

(10)

2e,€
vi=22 (11)
L)
Equation (10) indicates that the critical speed is zero when the gravitational stiffness
£, is zero. As the gravitational stiffness is increased, the critical speed increases to a
limiting value, given by 2
v? = =2, £, — O,
pa
This is the speed for which frequency coincidence between the kinematical oscillation
of a single wheelset and the natural mode of osciilation of the body on the suspension
occurs. If the lateral suspension stiffness ¢, is increased the critical speed is increased
up to a limiting value given by
2¢
=22, & 0. (12)
pa
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In this limiting condition, the body and the wheelsets move laterally without relative
displacement.

The critical speed is, in the absence of suspension damping, independent of the values
of the longitudinal and lateral creep coefficients. For the example vehicle, the critical
speed of the instability involving lateral translation of the body is 22-3 ft/sec and the
corresponding critical frequency is 1-07 ¢/s. The maximum damping factor (i.e. fraction of
critical damping) occurs at low speeds and is

LEd I L (13)

Valv=o

which amounts to only 0-0260 for the example vehicle. There is a corresponding analysis
for the instability involving the yawing motions of the body, as governed by equations
(5), and for the example vehicle the critical speed is 20-3 ft/sec and the critical frequency
is 0980 ¢/s.

STABILITY OF VEHICLE WITH SUSPENSION DAMPING AND
ZERO WHEELSET INERTIA

The solution of equations (6) for the critical conditions for which sinusoidal oscillations
of frequency v are possible, will now be considered. The effect of wheelset mass and moment
of inertia will be neglected, but suspension damping will be allowed for. The law rep-
resenting the action of an actual damper element depends, of course, on the type of damper.
In the present analysis it will be assumed that the hysteretic approximation is valid,
so that the action of the suspension is described in terms of a complex mechanical im-
pedance &,(1 +ig) where g is the hysteretic loss factor. This approximation has the advan-
tage that the analysis is very much simpler than if the viscous damping approximation
were taken. Since the remainder of the analysis is concerned with harmonic motion at a
critical speed, the implications of the dependence of &, and g upon frequency which
may arise in the case of actual suspension elements may be readily assessed in practical
applications of the theory, but it is assumed here that ¢, and g are independent of frequency.
Accordingly, the stability determinant becomes

’

%iv+€2+82(1+ig) “"I,LI —82(1+ig)
Lot g—iv 0 =0 (14)
~&,5(1 +1ig) 0 —1pv? +e,(1 +ig)

Equation (14) will be satisfied by the critical values of v and v. On expansion, equation
(14) becomes

’

W, ipve 1, 1pv?
—iv+E,— = —pv*<1l+ - . 15
p TR T { [—3pv? +e,(1 +ig)] (1)

The physical significance of equation (15) is that the L.H.S. represents the mechanical
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impedance of the wheel/rail sub-system and the R.H.S. represents the mechanical im-
pedance of the body and suspension sub-system. Separating real and imaginary parts,

1 $pv3 (g5 —30v?)
8. = —pviil 2 2”207
2= 3” [+(82“%PV2)2+825§

and

_i{_}_._ﬂ_,.._ — ,
v (ea—3pvf + g

or defining
Qr=1v2p/2e,, A=1v/y, G=e¢g/ua,

these equations become

g, 5 Q2(1-Q?
2 - P 1
59 [ R o] (16)
GQ* 1
2| o |A—— = 0. 17
A [(I—Qz)z-i-gz] a® (17
g=0 g=C
3.0
&
€2 Q"En/éa (1210
30
O Y e s A
i
1-Q— :
340 5
i
i
1
|
|
i A 1 E

2
[e] o2 o4 06 (H q¢> 0 Q
f+g 1+q2

FiG. 4. Determination of critical frequencies.
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F1G. 5. Effect of suspension damping on stability.

Equation (16) yields the critical frequencies Q. which depend only on the ratio &,/¢, and g.
Equation (17) then yields the corresponding critical wavelengths A, and hence the critical
speeds. Figure 5 shows the L.H.S. and R.H.S. of equation (16) each plotted against
frequency squared Q2. The critical frequencies are given by the intersections of the two
curves, and can be determined by solving the quadratic

g &
(I+~5>Q“— <1+2—2+g2)92+§3(1+g1) =0 (18)
£y & €3

which is equivalent to equation (16). As indicated by Fig. 4 the upper critical frequency
Q? is always less in value than (1+g?) and consequently equation (17) yields only one
critical wavelength A, corresponding to each critical frequency.

For the case of zero suspension damping, g = 0 equation (18) yields two solutions
which are

Q? = &‘2/52, ch = l,
corresponding to

Vi = 26,6,/p8,  vE = 2e,/p.
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The corresponding critical speeds are obtained from equation (17)
Al =1 /a, A = o,
so that

v? = 2e,8,/paé,, v = 0.

These results are, of course, in exact agreement with those obtained by the approximate
factorization of the characteristic equation. The system is unstable at all speeds above the
lower critical speed.

For the system with suspension damping Fig. 4 indicates that for small values of the
ratio ,/¢, there are two critical frequencies, as in the case of zero suspension damping.
At a particular value of the ratio £,/¢, only one critical frequency occurs, and for larger
values of the ratio there will be stability at all speeds. The condition for equation (18)
to have only one real solution is

28 2 £ Z
(1 +—~2+g2) = 4(1+~3)(1+g2)—2
&3 %) €,

which reduces to

g 1 1

2= (g+-) 1

& 2 (g+g) (1%
The corresponding critical frequency is

Q* = (1+g)/(1+g). (20)

If

£

2> }-(g+1), (21)

g 2 g

stability exists at all speeds. Since the minimum value of the R.H.S. of the inequality
(21) is unity a necessary condition for stability at all speeds is simply

gy, > g5,

If this condition is not satisfied, instability cannot be prevented by the provision of sus-
pension damping. Equation (21) also implies that, in order to obtain stability at all
speeds for a given value of the ratio &,/¢, it is necessary for the suspension damping to take
a value between certain limits. Instability will occur at some speed if the suspension
damping is either too small or too large. The effect of suspension damping on the critical
speeds in two cases £,/¢, = 05 and £,/¢, = 2, shown in Fig. 5.

The motion of the vehicle, in the critical mode and at a critical speed will take the
form

l//4 = —a4 COoSs vct,
wi = as Sin vct, (22)
Y = —ag cos(ve-+0),
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so that @ is the phase angle between lateral translation of the wheelset and lateral transla-
tion of the body. Since

#w/’4+ﬁsl”5 =0,
v (23)
—&o(L+igh s+ [3ps® + (1 +ig)lrs = 0,

the relative amplitudes are
2
a
(-5) = o2v?py?,
Qs

ag\*
(;) = 1+ -Q** +¢l.

4

(24)

and the phase angle is given by
tan f = Q%g/(1-Q?+2%), 25

the motion of the wheelsets is, therefore, identical to that in the kinematic mode of an
isolated wheelset [1] in the case where the suspension damping is zero; the amplitude
ratio (ae/a,) reduces to &,/c, and the corresponding phase angle is zero so that the lateral
displacement of the body is in phase with the lateral displacement of the wheelset. The

4 (o+4)
k5 (g4
o 2 - rf(//
. | oos /
I Eowm
I UNSTABLE | ~=====
o6 f piagpdoropd et it s
> e I
- / _— —
o
u 41
% A4
o4 /
*O
/S STABLE
oo~
NOMINAL
VALUE
o 02 Y] ) o8 10 2

SUSPENSION STIFFNESS, €3

F1G. 6. Stability as a function of suspension stiffness and speed.
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amplitude ratio increases with increasing gravitational stiffness, so that whereas the
amplitude ratio is unity in the case of coned wheels, it amounts to 105 in the case of the
example vehicle with profiled wheels.

Figure 6 shows the stability boundary as a function of forward speed v and suspension
stiffness ¢, for the example vehicle, in the case where the suspension damping g = 0-5.
For small values of suspension stiffness there is stability at all speeds. For large values of
the suspension stiffness there are two critical speeds and a region of instability. For
comparative purposes, the stability boundary for the same system, but with zero sus-
pension damping, is shown by the broken line in Fig. 6. As shown above the lower
critical speed is raised by increasing suspension stiffness until a limiting value is reached
which is given by equation (12), which is 72 ft/sec for the example vehicle.

As discussed in [1], wheels which initially possess conical treads are rapidly worn
so that the treads become concave. During the wearing process, the slope of the contact
plane &, remains constant, but the radius of curvature of the wheel tread decreases rapidly
until a profile is obtained which is not subject to any further change. For the numerical
example given above, reduction in the radius of curvature of the wheel tread R increases
the effective conicity /A, given by equation (4), from 0-05 (the value of 3,) when the radius is

R'= 0-690 ft
o7 ]
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F1G. 7. Effect of wheel and rail curvature on stability.



The dynamic stability of a simplified four-wheeled railway vehicle having profiled wheels 399

infinite to 0-40 when the radius is 0-787 ft; the latter corresponds to a profile of a fully
worn wheel, and the rail head radius R’ is, as specified above, 0-690 ft. The variation of
critical speed for the example vehicle, for g = 0 and g = 0-5, is shown in Fig. 7. Increasing
the ratio R'/R, increases the gravitational stiffness and consequently if there is suspension
damping a point will be reached where the vehicle is stable at all speeds. Increasing the
ratio R'/R also increases the effective conicity which tends to reduce the critical speed as
indicated by equation (17).

THE EFFECT OF WHEELSET INERTIA ON STABILITY

In the previous analysis of stability, wheelset mass and moment of inertia was neglected.
The treatment of stability can be extended to include the effect of wheelset inertia, and
assuming as before that the suspension damping can be described by the hysteretic
approximation, this requires the consideration of the stability determinant in the form

—v+Eivie, +e,(1+ig) " —ey(1+ig)
et _ jv2+l—; iv 0 =0 (26)
—e,(1+ig) 0 —1pvi+e,(1 +ig)

where v is the frequency of the oscillation at a critical speed. On expansion and separation
of real and imaginary parts, equation (26) becomes

_.v2+g _.__'uu.,a']—
2 v+ r?)]
1 2 1 2
- 21 3PV (e —3pV7) 27
ZPV{ [(e,—3pv?)* + g%€3] @)
and
' 1,2 1.2.3

P TR ) R P P L
As before, these expressions represent the equality of the mechanical impedance of the
wheel/rail sub-system (on the L.H.S.) and the mechanical impedance of the body and
suspension sub-system (on the R.H.S.) at the critical condition. The inclusion of wheelset
inertia has merely altered the L.H.S. of these equations. Now, in practical cases, the
creep coefficients are large compared with the inertia coefficients so that it is reasonable
to neglect j>v*> compared with u2/v? in equation (28). Introducing the quantities Q2, A and
G defined above, equation (28) then reduces to equation (17). With this approximation,
the relationship between critical frequency and critical speed is not affected by the intro-
duction of wheelset inertia. In accordance with the same approximation equation (27)
becomes

’

1
é:z—vz—%jow2 = Epvz {1+

forte_tor) | 29

[(e;—%pv?)? +g2€3]
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An approximate solution of equations (27) and (28) may be obtained by noting that the
lower critical speed of the body instability and the critical speed of the wheelset in-
stability occur at the kinematic wavelength so that

A? = 1/a, ie. v¥ = av?,

so that equation (29) may be written as

g, 2,u+2;z'j) Q*(1-0?) ]
R0 ] bl st N0 T ISl el N 0
» ( . Tl (0

The ratio (2u+ 24'j)/up represents the ratio of the effective inertia of the wheelset to half
the body mass. Equation (30) determines the critical frequencies of the system, and hence
the critical speeds.

In the case of zero suspension damping, there are two critical frequencies, given by the
solutions of the quadratic in 2.

8 g
24 K) Q@+2=0
€, &,

KQ*— (1 +
where .
K = (2u+2uj)/pp.
One solution occurs at relatively low frequencies and can, therefore, be approximated by
3 &
Q* = i/(1+~5+K>
& &

reducing to
v2 = 26282/<p§2 +282+282%]) .
The corresponding critical speed is
o= 25252/05(;)52 +2e,+ 282% J). 31)

This shows that including the wheelset mass and moment of inertia reduces the critical
speed associated with the instability of the body. The reduction is a maximum when the
gravitational stiffness is small, and in the case of the example vehicle the critical speed is
reduced from 22-3 ft/sec to 21-0 ft/sec. The other solution occurs at high frequencies, and
can be approximated by

£
Q= (1+—2+K)/K
€3
which is equivalent to .
o= 2k gfl
wp+uj) pa
This critical speed is associated with instability of a wheelset which has been discussed
in [1]. If the body mass is assumed to be very large then

(32)

v? = Eypfolu+ pj)
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which, in the absence of longitudinal suspension stiffness, is equation (14) of [1]. Allowance
for body motion, therefore, increases the critical speed, and in the case of the example
vehicle the critical speed is increased from 88 ft/sec to 91 ft/sec.

The vehicle is unstable at all speeds above the lower critical speed in the absence of
suspension damping, as indicated by Fig. 3 which shows the behaviour of the oscillatory
roots of the characteristic equation as the speed is varied.

In the case where the vehicle has suspension damping, then for negligible wheelset
inertia the condition for stability at all speeds is expressed by the inequality (21). If the
wheelset inertia is not neglected, a critical speed associated with instability of the wheelset
occurs. This critical speed is less than the critical speed given by equation (32), the re-
duction in critical speed being due to the introduction of suspension damping. As the
wheelset inertia is increased, the critical speed is reduced. As indicated by Fig. 8, for
values of wheelset inertia greater than a certain value, three critical speeds occur. As
before, the upper critical speed refers to the wheelset instability, and the lower critical
speeds enclose a range of speeds for which the body instability occurs. For sufficiently
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large values of wheelset inertia, the regions of wheelset instability and body instability
merge, and there is only one critical speed. This critical speed corresponds to that given
by equation (31) in the case of zero suspension damping. The effect of suspension damping
is always to increase this lower critical speed.

For a given wheelset inertia, the effect of suspension damping and gravitational
stiffness on stability is indicated by Fig. 9. If the gravitational stiffness &, is sufficiently
larger than the suspension stiffness ¢,, there is a range of suspension damping g for which
body instability does not occur. Increasing the suspension damping also reduces the
critical speed of the wheelset instability, so that for larger values of suspension damping,
the regions in the stability diagram shown in Fig. 9 corresponding to body instability
and wheelset instability coalesce. However, if £, is rather smaller than ¢,, increasing the
suspension damping does not eliminate the body instability, but the critical speed of the
wheelset instability is reduced as before so that for larger values of suspension damping
the regions corresponding to body instability and wheelset instability again coalesce.

In the absence of suspension damping, as the lateral suspension stiffness is increased
the critical speed increases to a limiting value given by

b2 = uéz/rx[j#’+ (1 +—§>u] (33)

which reduces to equation (12) if wheelset inertia is neglected.

APPLICATION OF THE THEORY

It has been shown that a railway vehicle of the type considered here may experience
dynamic instability of two kinds; the first kind of instability, investigated in the present
paper, has been termed body instability and can occur at relatively low speeds. The
second kind of instability is termed wheelset instability and was investigated in [1]. For
the complete vehicle, there are two possible modes of body instability, one associated
with the lateral translation of the vehicle body and the other associated with the yawing
motion of the body. In addition, there are two possible modes of wheelset instability,
one of which involves both wheelsets moving in phase and the other involving the wheel-
sets moving in antiphase. Figure 10 indicates the variation of the four critical speeds with
lateral suspension stiffness in a typical case. For given values of the gravitational stiffness
£, and suspension damping g, it can be seen that for small values of the lateral suspension
stiffness, the critical speed is that associated with the wheelset instability. For large
values of suspension stiffness, the critical speed is that corresponding to the body in-
stability. For certain intermediate values of suspension stiffness, there is a range of
speeds above the speeds at which the body instability occurs, for which the system is
stable, but this cannot be exploited in practice. These results indicate two possibilities
for the rational design of a railway vehicle for stable running. The first is to use a relatively
stiff suspension, so that the operating speed of the vehicle is limited by the occurrence
of the body instability and the second is to use a relatively flexible, damped suspension
so that the operating speed of the vehicle is limited by the occurrence of the wheelset
instability.

If the design employs a stiff suspension, suspension damping will not have a large
effect on the critical speed which will then be given by equation (31). The mass and
moment of inertia of the wheelset should be kept to a minimum, and the lateral suspension
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Fi1G. 10. Stability of complete vehicle as a function of speed and lateral suspension stiffness: (a) critical
speed associated with body lateral translation, (b) critical speed associated with body yaw, (c) wheelsets
in phase, (d) wheelsets in antiphase.

stiffness should be as large as possible consistent with other design requirements. If the
vehicle body is rigidly connected with the wheelsets in the lateral direction, 2 maximum
value of the critical speed will be obtained, which is given by equation (33). The gravita-
tional stiffness &, should be large and the effective conicity « small for stability. Con-
siderations of static stability limits the reduction of the effective conicity, which could,
in principle, be varied independently of the curvatures of rail and wheel by variation of
the angle of the tread &, (see equation (4)). Similarly, as the ratio of the radius of curvature
of the rail head R’ to the radius of curvature of the wheel tread R is varied, a maximum
value for the critical speed is obtained, so that an optimum value of R'/R exists, giving
the optimum combination of gravitational stiffness £, and effective conicity «. However,
it is doubtful whether variations in R, R" and J, can be exploited, as the values of R, R’
and d, depend on wear. It is known that the treads of wheels wear rapidly until a profile
is obtained which is not subject to any further change, and it is suggested that the vehicle
should be designed so that satisfactory behaviour is obtained with wheels which possess
profiles approximating to the fully worn profile. This has the advantage that no variations
in the parameters of the system should be caused by further wear. The gravitational
stiffness is proportional to axle-load and it follows that increasing the axle-load is stabiliz-
ing. The influence of realistic variations in the values of the creep coefficients is small.
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As mentioned previously, the lowest critical speed for the example vehicle, which has a
rather flexible suspension, is 20-3 ft/sec. Employing a stiff suspension, as discussed here,
would raise this critical speed up to a maximum of 51-7 ft/sec, according to equation (33).

Design employing a damped, flexible suspension depends on the elimination .of the
body instability and the raising of the critical speed of the wheelset instability as high as
possible. The body instability can be eliminated by satisfying the inequality (21) which
determines the relationship between the gravitational stiffness &,, the suspension stiffness
¢, and the suspension damping g. The gravitational stiffness £, should be large, and, there-
fore, profiled wheels are necessary. For the reasons discussed above, it is unlikely that
variations in the curvatures of wheel and rail, and in the slope of the wheel tread J, can
be exploited in practice, and consequently wheels with profiles approximating to the worn
profile are necessary. Since the critical speed of the wheelset instability, given by equa-
tion (32), increases with increasing suspension and gravitational stiffness, the suspension
stiffness should be as large as possible, consistent with satisfying the inequality (21), and
this requires a' suitable value for the suspension damping. However, very large values of
suspension damping will lead to unacceptable reductions in the critical speed correspond-
ing to the wheelset instability, as shown in Fig. 9, so that an appropriate choice of suspen-
sion stiffness and damping is necessary. Wheelset mass and moment of inertia must be
reduced as far as possible. For the example vehicle &,/e, = 946 so that the minimum
damping required follows from the inequality (21) as g = 0:053. The critical speed of
wheelset instability is, from equation (32), 90-6 ft/sec, which represents a substanfial
increase over that obtained by using a stiff suspension.
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Résumé—L’instabilité dynamique d’un véhicule de chemin de fer a quatre roues, provenant de I’action combinée
des forces transversales entre les roues et les rails et de la conicité des roues, est étudiée par I'auteur pour le cas
ol le corps du véhicule est relié aux roues par I'intermédiaire d’une suspension élastique. L’auteur suppose
que la rigidité de la suspension est négligeable dans le sens longitudinal et que la surface portante des roues est
profilée au lieu d’8tre simplement conique. L’auteur montre qu’il existe deux possibilités d’instabilité; I'insta-
bilité de la portance des roues qui se manifeste aux grandes vitesses et dans laquelle intervient principalement
le mouvement des roues et 1’instabilité du corps du véhicule qui apparait aux faibles vitesses et qui provoque
de grands déplacements du corps. L’auteur démontre que la force de rappel provenant de la composante
latérale de la réaction normale entre rous et rail, au cours d’un déplacement latéral, a une grande influence
sur la stabilité et il montre comment cette influence peut étre utilisée, en liaison avec I’amortissement de la
suspension, pour faire I’étude correcte d’un véhicule de chemin de fer, stable aux grandes vitesses.
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AOcTpakT—/drHaMHnyeckas HEYCTOMMHMBOCTL HETBIPEXKOJIECHOTO JXENE3HOAOPOXHOIO Barosa, obycno-
B/IEHHasAs COBMECTHBIM JEHCTBHEM CHJI IOA3YMECTH, AEHCTBYIOUIHX MeXAY KOJeCaMH M pelibCaMu, U
KOHHYHOCTH KOJIEC, HCCIIEQyeTCss B TOM CJIyuae, KOrda KOpIIYC BaroHa MPUCOEOHHSETCA K KOJeCaM IocC-
peacTeom ynpyro# noasecku. [loasecka pac YMTLIBAETCH C TEM, YTOOBI HMETh HE3HAUMTENBHYIO KECTKOCTh
B MPOJOJLHOM HANpPaBJIEHHH, U NOBEPXHOCTh KATAHMS KOJIEC NPOPUINPYETCH BMECTO TOro, 4ToObi GhITH
YHCTO KOHHYeckOH. I[loxa3piBaeTcsi, YTO CYLIECTBYET OBA BO3MOXHBIX THMAA HEYCTOWYMBOCTH: HEyCTOM-
YHBOCTb TEJIEXKHM, KOTOPAs BCTPEYAETCA NPH BBICOKHX CKOPOCTSIX M KOTOpas BKJIIOYAeT B celst IIaBHBIM
obpa3oM nepeMeulCHHE TeJIEXKKH, M KOPIYCHas HEYCTOMYHBOCTH, KOTOpash HMEET MECTO TIDH HH3KHX
CKOPOCTSIX W BKJIIOMaeT B cebs nepeMellieHne Kopryca. BiusiHMe BOCCTAHABIMBAIOWIEH CHIbI, KOTOpPAs
SBAAETCH PE3IYNBTATOM IOMIEPEYHON COCTAB/IAIOLIEH H3IMEHEHUs HOPDMAJIBHOH peakmuu Mexnay KOJIecoM
W PENbCOM M MONEPEYHBIM MEPEMEUIEHHEM, Ha YCTOKYMBOCTL UMeeT Golbilioe 3Ha4YeHUE; onpelenseTcs,
KaK 3TO BIHAHHE MOXeT OBIThb HCIONIL30BAHO B COYETAHHH C B MPABHILHO CNPOEKTHPOBAHHBIX XKEIE3IHO-
[OPOXKHBIX BATOHAX AJIS POBHOIO XOHA NPH BHICOKHX CKOPOCTSX.



